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Abstract. This paper presents a winning solution for the CCKS-2020 fi-
nancial event extraction task, where the goal is to detect event types, trig-
gers and arguments in sentences across multiple event types. In this task,
we focus on resolving two challenging problems (i.e. low resources and
element overlapping) by proposing a joint learning framework, named
SaltyFishes. We first formulate the event extraction task as a joint prob-
ability model. By sharing parameters in the model across different types,
we can learn to adapt to low-resource events based on high-resource
events. Then we further address the element overlapping problems by
a mechanism of Conditional Layer Normalization, achieving even better
extraction accuracy. The overall approach achieves a F1-score of 87.8%
which ranks the first place in the task.

Keywords: Event Detection · Event Extraction · Joint Learning.

1 Introduction

The CCKS-2020 financial event extraction task1 aims at extracting structural
events by detecting event types, triggers and arguments in sentences across mul-
tiple types. Figure (1) gives an example of event extraction for a financial news
sentence. One structural event belongs to the type of投资, along with the trigger
收购 and its arguments providing more complementary details. Note that, this
sentence contains more than one event, and the trigger and arguments overlap
across the events.

The CCKS-2020 task provides two kinds of such event sentences. The first
one contains 5 types of events associated with abundant sentence corpus, called
source events. The second one contains another 5 types of events associated with
low-resource sentence corpus, called target events. Each type of event sentences
⋆ Corresponding author.

⋆⋆ Corresponding author.
1 https://www.biendata.xyz/competition/ccks_2020_3/
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# Sentence
世纪华通/ 作价/ 298.03亿元/ 收购/ 盛跃网络/ 100%/ 股权。
Shijihuatong/set a price of/ 29.803 billion yuan/ to acquire/ Shengyue Network‘s/ 100% equity.

# Event 1
Event Type：投资/ investment
Trigger：收购/ acquire
Arguments
Sub-company：世纪华通/ Shijihuatong
Obj-company：盛跃网络/ Shengyue Network
Money：298.03亿元/ 29.803 billion yuan

# Event 2
Event Type：股份股权转让/ share transfer
Trigger：收购/ acquire
Arguments
Sub-company：盛跃网络/ Shengyue Network
Obj-company：世纪华通/ Shijihuatong
Money： 298.03亿元/ 29.803 billion yuan
Proportion：100%/ 100%
Collateral：股权/ equity

Fig. 1. Example of event extraction with element overlaping problem.

is split into training (labeled data) and testing (unlabeled data) parts. Our
goal is to test the performance of event extraction on the test set of target
events. This poses two main challenges compared to traditional event extraction
tasks [2–4,6, 7]:

– The target events contain only 179 training sentences on average for each
type. This limited supervision information cannot provide sufficient contex-
tual information for the event extraction.

– Elements can be overlapping with each other, i.e., the same trigger or argu-
ment may belong to different events. As shown in the example, the trigger
收购 and the argument 世纪华通 belong to both event types of 投资 and
股份股权转让. Performing event extraction by a simple sequence labeling
method will cause label conflicts.

To address these challenges, we devise a joint learning method. In our ap-
proach, the overall framework is formulated as a joint probability model, which
is decomposed into submodels, i.e., the joint distribution is decomposed into a
product of three conditional distributions. Each subtask will be a specifical use of
this distribution, including event type detection, trigger extraction and argument
extraction. For the first subtask, given a financial news sentence, we first classify
the sentence into a correct event type by using a multi-class multi-label text
classification paradigm. For the other two subtasks, we successively extract trig-
gers and arguments with a pre-training/fine-tuning framework. The pre-training
module is implemented by a pre-trained language model RoBERTa [5] on all
financial news sentences, and we further fine-tune the pre-trained model with
respect to the trigger/argument extraction module. To deal with the element
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Fig. 2. The overall framework of the financial event extraction approach.

overlaping issue, we introduce Conditional Layer Normalization, only extracting
triggers according to the specific event type, and extracting arguments according
to the specific trigger. This way can extract elements separately in different con-
ditions, avoiding overlapping. In addition, by sharing parameters across different
types in such a unified model, we can learn to adapt to low-resource events based
on high-resource events. Our approach achieves a F1-score of 87.8% which ranks
the first in the CCKS-2020 financial event extraction competition.

2 Our Approach

This section introduces our approach in details. We will present the overview,
the design of each component, and some strategies for improvements.

2.1 Overview

Given a sentence denoted as s, we propose a joint learning approach to detect
its event types C, event triggers T and event arguments A. The approach is for-
mulated as a joint probability model, which is decomposed into three submodels
with respect to the event type detection, the event trigger extraction and the
event argument extraction:

P (C, T,A|s; Θ) ∝ P (C|s; Θ1)P (T |s, C; Θ2,Θ3)P (A|s, C, T ; Θ2,Θ4). (1)

The event type detection is modeled by a multi-class multi-label text classifica-
tion paradigm, where Θ1 is the set of model parameters. Other two extraction
parts are modeled by a pre-training/fine-tuning framework, where Θ2 contains
model parameters shared by both modules, while Θ3 and Θ4 are respective pri-
vate model parameters. All parameters in Θ = {Θ1,Θ2,Θ3,Θ4} are used across
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different event types (either high-resource or low-resource), which promotes rich
interactions between source events and target events. Figure (2) sketches the
overall framework.

2.2 Event Type Detection Model

In order to discover the event types occuring in the sentence, we adopt codes
provided by official competition6 as our Event type Detection Model (EDM).
This model utilizes a pre-trained language model 7 to derive sentence represen-
tations, formulated as a multi-label multiclass text classification. Specifically,
given the sentence s, the probability of s belonging to a specific type c is calcu-
lated as follows:

p(c|s; Θ1) = sigmoid(wc · zsent), (2)

where zsent is the hidden state corresponding to the input token <CLS> in PLM,
which encodes the entire sentence representation of s; Θ1 includes all parameters
used in PLM.

Then, we can update and obtain the desired sentence representation zsent

by minimizing following binary cross entropy loss function:

Loss(Θ1) =

M∑
m=1

ym ∗ log(pm) + (1− ym) ∗ log(1− pm) (3)

where M is the number of the training sentences; ym is the true type label.
During prediction, we simply set a threshold δ and select the resultant event
types C where each type c such that p(c|s) > δ.

2.3 Extraction Model

This section introduces our Event Extraction Model (EEM), achieving two
subtasks by a pre-training/fine-tuning framework: trigger extraction and argu-
ment extraction. The pre-training part encodes sentence tokens as contextualized
representations with the pre-trained language model (PLM) RoBERTa [5], which
contains rich language knowledge widely used for NLP tasks. The fine-tuning
part is divided into three modules, including a shared module to encode con-
dition information based on Conditional Layer Normalization, and two private
modules to extract triggers and arguments. Note that both extraction modules
have similar model structure.

Shared Module This section introduces a sentence representation layer shared
by both trigger extraction and argument extraction, which will derive a condi-
tional sentence representation Hs−typ for the specific event type c, and a syn-
tactic feature representation Hsyn.
6 https://github.com/xyionwu/ccks-2020-finance-transfer-ee-baseline
7 https://github.com/ymcui/Chinese-BERT-wwm
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Since we have obtained event types C occuring in the given sentence s, we
are going to derive sentence representations conditioned on each specific event
type c ∈ C, so as to avoid element overlapping issues. To this end, we introduce a
general module, named Conditional Layer Normalization (CLN) [8], to integrate
such conditional information into sentence representation. CLN is mostly based
on the well-known layer normalization [1], but can dynamically generate gain γ
and bias β based on the condition information. Given a condition representation
c and a sentence representation x, CLN is formulated as:

CLN(x, c) = γc ⊙ (
x− µ

σ
) + βc, (4)

µ =
1

d

d∑
i=1

xi, σ =

√√√√1

d

d∑
i=1

(xi − µ)2, (5)

γc = Wγc+ bγ ,βc = Wβc+ bβ , (6)

where xi is the i-th token representation in x, γc ∈ Rd and βc ∈ Rd are the
conditional gain and bias, respectively. In this way, the given condition represen-
tation is encoded into the gain and bias, and then integrated into the contextual
representations.

Then we utilize CLN to integrate event type information into the sentence.
Specifically, we first transform the event type’s name into textual tokens, such
as the type 投资 is transformed into tokens 投 and 资. Then we concatenate
these type tokens together with the word tokens in the sentence s, forming a
sequence as X : <CLS>+ type tokens + <SEP> + word tokens + <SEP>. The
sequence is input into the PLM to derive their contextualized representations,
and we term the representations corresponding to type tokens as Hc and word
tokens as Hs. Then, we fuse Hc with mean pooling and Hs together, to derive
the conditional token representations for s:

Hs−typ = CLN (Hs,MeanPooling(Hc)) , (7)

where Hs−typ is the token representations conditioned on the event type c. Such
process actually generates type-aware token representations adaptive to various
event types. As such, we can perform trigger extraction and argument extraction
in the independent context of each type.

Private Module The private module contains the following two sub-modules.
(1) Trigger Extraction Module (TEM) This module extracts event trig-

gers given the event type c ∈ C. In order to improve textual representations for
trigger extraction, we adopt a Self-Attention (SA) layer. Thus the type-aware
token representations can be enhanced as follows:

Hsa−typ = SA(Hs−typ). (8)

Htri = Hs−typ ⊕Hsa−typ ⊕Hsyn. (9)
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where ⊕ is the concatenation operation. Hsyn corresponds to the representation
of syntactic features, obtained by NLP tool LTP8.

In order to strength interactions among triggers of different event types,
we predict triggers with the same trigger extractor. For each token, we predict
whether it is a begin or end position of a trigger as:

p(t(b)|xi, c; Θ2,Θ3) = sigmoid(wt(b) ∗ htri,i), (10)

p(t(e)|xi, c; Θ2,Θ3) = sigmoid(wt(e) ∗ htri,i) (11)

where htri,i is the i-th element of Htri. wt(b) and wt(e) are learnable parameters.
Θ3 includes wt(b) , wt(e) , and parameters in SA.

Then, a binary cross entropy loss function is used for begin position prediction
and end position prediction, denoted as Losst(b) and Losst(e) . The final loss is
defined as:

Losstri(Θ2,Θ3) = wt ∗ Losst(b)(Θ2,Θ3) + (1− wt) ∗ Losst(e)(Θ2,Θ3), (12)

where wt ∈ (0, 1) is a trade-off factor. For prediction, we simply set a threshold
ϕtri, and select positions such that their prediction scores are higher than ϕtri.
We just match the start position with the nearest end position to obtain a
complete trigger. The final trigger extraction results form the trigger set T .

(2) Argument Extraction Module (AEM) This module is to extract
arguments conditioned on one of the triggers T extracted from the TEM. Given
a specific trigger t ∈ T in the sentence s, we obtain trigger-aware sentence repre-
sentation Hs−tri conditioned on t, where the process is the same as Eq (7). We
also utilize self-attention layer to enhance the sentence representation, termed as
Hsa−tri. To discern the position of trigger t, we further add its relative position
embedding R, which measures the distance from current position to the trigger
position. The syntactic feature Hsyn is also taken into consideration. Thus, the
enhanced sentence overall representation is:

Harg = Hs−tri ⊕Hsa−tri ⊕R⊕Hsyn, (13)

As for trigger extraction, we also extract all arguments with the same ex-
tractor and devise it as follows:

p(a
(b)
k |xi, c, t; Θ2,Θ4) = sigmoid(w

a
(b)
k

∗ harg,i), (14)

p(a
(e)
k |xi, c, t; Θ2,Θ4) = sigmoid(w

a
(e)
k

∗ harg,i), (15)

where harg,i is the i-th element of Harg. w
a
(b)
k

and w
a
(e)
k

are learnable parameters
for the k-th argument role. Θ4 includes w

a
(b)
k

, w
a
(e)
k

, and the parameters in SA
and CLN.
8 http://ltp.ai/
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The loss function is also binary cross entropy for both begin and end position
prediction for each argument role:

Lossarg(Θ2,Θ4) =

K∑
k=1

wa ∗Lossa(b)
k

(Θ2,Θ4)+(1−wa)∗Lossa(e)
k

(Θ2,Θ4), (16)

where wt ∈ (0, 1) is a tradeoff factor. For prediction, we simply set a threshold
ϕarg, and select positions that prediction score higher than ϕarg. We just match
the start position with the nearest end position to obtain a complete argument.
We remove the redundant argument types for each event type based on the event
schema constrain. The final results form the argument set A.

Training and Prediction To jointly learn the TEM and AEM, we combine
both losses from the two modules as:

Loss(Θ2,Θ3,Θ4) = wj ∗ Losstri(Θ2,Θ3) + (1− wj) ∗ Lossarg(Θ2,Θ4) (17)

where wj ∈ (0, 1) is a weight hyperparameter to balance the two modules.
We utilize groundtruth labels to train the overall model. For prediction, we

first obtain trigger extraction results, and then input them into the argument
extraction module. The results obtained from the two modules are returned as
the final predictions.

2.4 Additional Strategy

Actually, despite the training datasets, the unlabeled data in the testing
datasets also contains rich information. In order to exploit all the data to improve
performance, we also employ the following strategies:

Continuing Pre-training on PLM: PLMs are usually pre-trained on the
common corpus, which may causes semantic bias on the financial corpus. There-
fore, we continue pre-training the PLM on all the financial data, including train-
ing data and testing data. This strategy is applied to both EDM and EEM.

Model Ensemble on Variant Data Splits: To fully exploit labeled data,
we adopt K-fold validation on the labeled data, which also leads to K models
trained on different data splits. Then, we ensemble K model predictions by the
voting strategy. This model ensemble strategy is applied to EDM and EEM,
separately.

Utilizing Pseudo-Labels on Unlabeled Data: To fully exploit unlabeled
data, we employ a novel strategy to label testing data with pseudo labels. Specif-
ically, we train models on the groundtruth data, and then predict labels on those
unlabeled data, which is called pseudo-label data. By integrating pseudo-labeled
data into groundtruth data, we obtain a mixed event dataset. We train new
models on this mixed dataset. Note that this strategy is only used for EEM,
where we achieve better performance.
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source Types 质押 投资 股份股权转让 高管减持 起诉
pledge investment share transfer reduction prosecution

Data Size 815 1083 1581 670 533

target Types 收购 判决 中标 签署合同 担保
acquisition judgment win bid sign contract guarantee

Data Size 200 200 200 132 163
Table 1. Statistics of each event type in the dataset.

training validation testing

source Types 2,459 273 163,763
target Types 738 82 93,610

Table 2. Data partition for training, validation and testing.

3 Experiment

This section introduces the dataset provided in the competition, and conducts
experiments to evaluate the model.

3.1 Dataset

The dataset provided in the competition contains source event data and
target event data, including labeled data and testing data for each event type.
The statistics of each event type of labeled data is shown in Table (1). The
competition only evaluates on the tesing target event data. For validation, we
separate a part of labeled data as validation data. The details of data partition
is shown in Table (2). Since the groundtruth of testing data not is available, all
experiments below is conducted on the validation data.

3.2 Implementation

We utilize RoBERTa continue pre-trained on this financial data as PLM. For
EDM, we set learning rate to 2e-5. The batch size is 16. For EEM, we apply
learning rate of 2e-5 to PLM layer and 1e-4 to other layers. The batch size is
8. The tradeoff weight wt, wa, wj is set to 0.5, 0.5, 0.2, respectively. Each kind
of syntactic embedding dimension is set to 40. The relative position embedding
dimension is set to 64. We apply dropout to SA layer and all input embeddings
with the rate set to 0.3. With the model ensemble strategy, we train 5 EDMs for
a better event type prediction. For EEM, we train 5 models, and ensemble the
5 results to obatin pseudo label on the testing data. Then, we train 10 EEMs
on the mixed training data, and obtain 10 predictions on the testing data. We
finally ensemble all 15 EEM results as the final submission.
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3.3 Main Result
Since the groundtruth of testing data is not available, we conduct experiments

on the validation data. The F1-score of event detection, trigger extraction and
argument extraction on validation data is 0.921, 0.970, 0.889, respectively. The
best result of our approach on official testing data is 0.8781 which is the highest
score in the competition.

3.4 Ablation Study

Trigger Extraction Argument Extraction
P R F1 P R F1 F1-mean

1. complete model .969 .979 .970 .844 .969 .889 .930
2. w/o pseudo-label data .940 .952 .939 .845 .863 .838 .888
3. w/o source data .941 .945 .934 .818 .865 .823 .878

4. repl PLM: BERT .901 .924 .904 .789 .825 .789 .846
5. repl PLM: RoBERTa .931 .938 .929 .837 .886 .828 .879

6. repl CLN: concat .940 .952 .939 .845 .863 .838 .888

7. w/o layer lr .946 .945 .940 .799 .869 .816 .878
8. w/o syntactic feature .921 .924 .917 .863 .874 .856 .887

Table 3. Results on validation data.

We conduct ablation study on the event extraction model, where the results
are shown in Table (3). Specifically, Line.1 shows the complete model, which
is trained on both groundtruth data and pseudo-label data with all compo-
nents. Line.2 removes the pseudo-label data, and the results show that utilizing
pseudo-label data improves performance significantly. The following experiments
is ablated based on Line.2. Line.3 removes source data in training, and the result
indicates that learning target events with source events is effective. Line.4 and
Line.5 replace the continue pre-trained PLM by BERT and standard RoBERTa,
which indicates the effectiveness of continuing pre-training for PLM. Line.6 re-
places CLN by a simple concatenate operation, which indicates CLN can utilize
condition information more effectively. Line.7 applies the same learning rate
to all layers, which indicates utilizing different learning rate on model layers
benefits the learning process. Line.8 removes syntactic features, which indicates
syntactic features improve the extraction performance. All results demonstrate
that each component is effective in the event extraction task.

4 Conclusion
In this paper, we propose a financial event extraction approach based on a

joint learning framework, which fully utilizes all the data to improve the perfor-
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mance of low-resource event types, and effectively solves the overlapping problem
of events. The experimental results show that the approach achieves significantly
performance, and it ranks the first place in the CCKS-2020 financial event ex-
traction competition.
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