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Abstract. Due to the large-scale spread of COVID-19, which has an important 

impact on human health and social economy, designing effective antiviral drugs 

for COVID-19 is a key to save lives. Existing relationship knowledge, e.g., 

drug-virus and viral protein-host protein, can be used for building a reliable 

knowledge graph. Based on this, large-scale graph and knowledge reasoning al-

gorithms can be used to predict new targeting effects between antiviral drugs 

and viruses. China Conference on Knowledge Graph and Semantic Computing 

(CCKS) 2020 set up a link prediction task for the knowledge graph of COVID-

19 antiviral drug, requiring prediction of the relationship between two entities 

in the graph. In this study, we proposed a fusion strategy to integrate the results 

of two tensor decomposition-based models (i.e., CP-N3 and ComplEx-N3). 

Sufficient experiments indicated that our method obtained high performance 

(MRR=0.2328), which ranks third in the fierce competition of CCKS 2020 

Challenge Task 1. 

Keywords: Link Prediction, Knowledge Graph, COVID-19, antiviral drug pre-

diction 

1 Introduction 

Knowledge Graph (KG) is a structured representation of real-world information. In 

KGs, nodes represent entities, such as people and places; edges are specific facts that 

connect two entities; labels are the types of edges [1,2]. As a basis for upper-level 

applications, KG plays an extremely important role in the intelligent era. However, it 

is well known that even state-of-the-art KGs suffer from incompleteness [3,1,4], even 

the most advanced KGs, such as FreeBase [5], WikiData [6], DBPedia [7] and – in 

industry – Google KG [8]. Link prediction (LP), which exploits the existing facts in a 

KG to infer missing ones, is one of the most prospective ways to solve this problem 

[8]. 

At the time of the large-scale spread of COVID-19 [9], China Conference on 

Knowledge Graph and Semantic Computing (CCKS) 2020 set up a link prediction 

task for the knowledge graph of COVID-19 antiviral drug (ADKG), requiring predic-
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tion of the relationship between two entities in the graph. It has great significance and 

academic value for the research and development of antiviral drugs. 

At present, in terms of link prediction tasks, methods that can be considered in-

clude the similarity of node attribute, network structure and likelihood analysis, but 

more and more effective methods are based on machine learning methods. In these 

methods, some can be based on classification methods, such as decision trees [10], 

support vector machines [11], multi-layer perceptions [12], etc. and some be based on 

probability graph models and matrix decomposition methods [13-16]. In recent years, 

tensor decomposition has attracted much attention [14]. The Canonical Tensor De-

composition (CP) decomposes a high-order tensor into several one-dimensional factor 

matrices [13,17]. For example, a third-order tensor can be decomposed into three one-

dimensional factors. It can be understood as a low-rank approximation or feature ex-

traction of high-dimensional data. ComplEx [14], a complex number-based represen-

tation method can grasp the symmetric and asymmetric relationships in the binary 

relationship of the knowledge base. 

In this study, we participated in the CCKS 2020 link prediction task and proposed   

a fusion strategy, which effectively integrates the results obtained by two tensor de-

composition-based models (i.e., CP-N3 and ComplEx-N3). Sufficient experiments 

indicated that our method obtained high performance (MRR=0.2328), which ranks 

third in the fierce competition of CCKS 2020 Challenge Task 1. 

2 Related work 

Representation learning based on tensor decomposition treats each triple as an ele-

ment in a tensor and performs representation learning through a tensor decomposition 

algorithm. Tensor decomposition is a combination of low-dimensional vectors, which 

are used as embeddings of entities and relationships. The core idea is that the model is 

not excessively applied to the training set, the learned embeddings should be able to 

generalize and associate high values with real facts that are not visible in the graph 

adjacency matrix. As the first typical representative algorithm that uses tensor de-

composition for the completion of knowledge graphs, RESCAL [18] uses a third-

order tensor to represent entities and relationships. However, due to the large number 

of parameters in this method, the risk of overfitting is more likely to occur, so the 

DistMult [15] algorithm appears. The method proposed that each relationship should 

have a corresponding diagonal matrix. The third-order binary tensor trained by this 

algorithm is symmetric in the head and tail entity embeddings, so it cannot be mod-

eled a symmetric relationship.  

ComplEX [16] extends DistMult [15] in the complex number domain, uses vector 

dot multiplication to calculate the triplet score, uses probability to determine the cor-

rectness of the triplet, and can also model asymmetric relationships. Among the linear 

methods, first-order logic rules can be used to learn the relationships in the KG. CP 

regards the link prediction as a 3rd-order binary tensor completion problem, which 

embeds the head and tail entities of the unified entity independently to each other.  
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3 Methods 

3.1 Data preprocessing 

First, we used regular expressions to match the given officially data files to get the 

data with triple format we need. Second, we added the list of entity attributes to our 

knowledge graph to get more attribute information of the entity. Finally, to expand 

more relationships from the knowledge graph, we used a well-known data augmenta-

tion technique [13,19], which added reciprocal relations for every triple, i.e. adding (t; 

r−1; h) for every (h; r; t), where h is the head entity, r is the relationship and t is the tail 

entity. 

3.2 CP-N3 

The canonical decomposition of tensors, also called CANDECOM/PARAFAC (CP) 

[20], represents a tensor 𝑋 ∈ 𝑅𝑁1×N2×N3  as a sum of R rank one tensors 𝑢𝑟
(1)

⊗

𝑢𝑟
(2)

⊗ 𝑢𝑟
(3)

 (⊗ denotes tensor product) where 𝑟 ∈ {1, … , 𝑅} and 𝑢𝑟
(𝑚)

∈  𝑅𝑁𝑚  [13]: 

𝑿 =  ∑ 𝑢𝑟
(1)

 ⊗ 𝑢𝑟
(2)

⊗ 𝑢𝑟
(3)

𝑅

𝑟=1

 

Current CP on the standard benchmarks of Knowledge Base Completion are behind 

their competitors. Timothee et al. [13] proposed a novel regularizer, based on tensor 

nuclear p-norms, and then presented a reformulation of the problem, which make it 

beat the current state of the art on several datasets with a CP decomposition (named 

CP-N3). 

3.3 ComplEx-N3 

Similar to DistMult [15], ComplEx [16] forces each relation embedding to be a diag-

onal matrix thus yields a tensor that is symmetric in the object and subject modes, but 

extends such formulation in the complex space: ℎ ∈ 𝐶𝑑 , 𝑡 ∈ 𝐶𝑑 , 𝑟 ∈ 𝐶𝑑×d. In the 

complex space, the bilinear product becomes a Hermitian product, where in lieu of the 

traditional t, its conjugate-transpose 𝑡̅ is employed. This allows ComplEx to success-

fully model asymmetric relations as well. Timothee et al. [13] proposed a ComplEx-

based model (named ComplEx-N3) with the novel regularizer and systematic parame-

ter searches, which obtained better performance than ComplEx. 

3.4 A fusion strategy of predictive results 

Different from the traditional machine learning method with one learner to train, the 

integrated learning methods usually trains multiple learners and combines them to 

obtain better results. These methods have been applied to a variety of applications, 

such as computer vision [21], species distribution prediction [22] and auxiliary diag-

nosis [23]. 
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Fig. 2. The framework of a fusion strategy. First, the same knowledge graph is used to train the 

CP-N3 and ComplEx-N3 models, respectively.  Then the two models are used to predict the 

prediction results separately to obtain top 20 prediction results. Finally, the two top 20 results 

are weighted integrated by voting to obtain the final top 10 predictive results. 

Inspired by the idea of integrated learning, we designed a fusion strategy for this task 

(Fig. 2). First, we use the same knowledge graph to train the CP-N3 and ComplEx-N3 

models, respectively. Second, we use the two models to predict the results separately 

to obtain the top 20 predictive results. Finally, the two top 20 results are weighted 

integrated by voting to obtain the final top 10 predictive results. When the results are 

integrated, we restrict the entity based on the entity type, and eliminate the entities 

that are not of this type. 

4 Experiments 

4.1 Datasets 

We use the ADKG of CCKS 2020 to evaluate our approach. The dataset is published 

by the CCKS 2020 task 1, which includes three types of entities (i.e., proteins, virus-

es, and drugs) and four relationship types (i.e., effect, interaction, produce and bind-

ing). The knowledge graph includes 7,844 entities, 40,000 triples, and the first batch 

of predictive data has 4,256 triples and the second batch of predictive data has 5,000 

triples. 

In experiments, to evaluate the performance of models, we randomly selected 10% 

of each relationship type from the training set as the test set, a total of 4000 triples. In 

order to get more attribute information of the entity, we add the list of entity attributes 

to our training set and add the involved entities to the entity list simultaneously. In 

total, the knowledge graph has 8,494 entities and 51,131 triples, of which 47,131 

triples are in the training set and 4,000 triples are in the test set. 
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4.2 Experimental setup 

We tuned all hyper-parameters based on predictive performance to find the best pa-

rameter settings on ADKG. Table 1 showed the best parameter settings of the two 

methods. In experiments, we used the well-tuned parameters to obtain the top 20 re-

sults of the two methods respectively, and integrated the two results according to our 

fusion strategy to obtain the final results. 

Table 1. Best parameter settings of CP-N3 and ComplEx-N3 on ADKG. 

Hyper-parameters CP-N3 ComplEx-N3 

Dimension 2000 2500 

Learning rate 0.06 0.07 

Batch size 256 128 

Regularization coefficient 0.01 0.005 

Initialization 0.001 0.001 

Optimizer Adagrad Adagrad 

5 Results 

5.1 Comparison results with baselines 

For each test triple we generate 8,494 candidate triples by combining the test entity-

relation pair with all possible entities E, ranking the scores obtained. We used the 

filtered setting [24], i.e. all known true triples are removed from the candidate set 

except for the current test triple. Since the top 10 candidate entities were finally sub-

mitted, we still cared about the prediction results after the top 10 to integrate the re-

sults. Therefore, we used mean reciprocal rank of top 10 (MRR_10) and hits@k, 𝑘 ∈
{10; 20; 50; 100} to evaluate the performance. Mean reciprocal rank of top 10 is the 

average of the inverse of the mean rank assigned to the true triple over the top 10 

candidate triples. Hits@k measures the percentage of times a true triple is ranked 

within the top k candidate triples. Comparison results of link prediction on ADKG 

were shown in Table 2.  

In addition to the two given baselines (i.e., TransE [24] and R-GCN [25]), we also 

showed the performance of other six classic methods, i.e., DistMult [15], ComplEx 

[16], TuckER [14], HypER [26], CrossE [27] and ConvE [19]. Results showed that 

CP-N3 (MRR_10=0.185) and ComplEx-N3 (MRR_10=0.183) not only achieved 

better than some linear models (e.g., DistMult, ComplEx and TuckER), but also better 

than some deep neural network, e.g. RGCN, HypER, CrossE and ConvE. The per-

formance of CP-N3 and ComplEx-N3 far exceeds other methods, therefore, we chose 

the top 20 results of these two models to integrate the results on the prediction set. In 

the fierce competition of CCKS 2020 Challenge Task 1, it got 19.785 (ranking first) 
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in the first batch of predictive data and got 23.275 (ranking third) in the second batch 

of data. 

Table 2. Comparison results of link prediction methods. 

Model Hits@10 Hits@20 Hits@50 Hits@100 MRR_10 

TransE 0.17 0.24 0.34 0.42 0.076 

R-GCN 0.20 0.26 0.38 0.49 0.079 

DistMult 0.301 0.384 0.506 0.596 0.140 

ComplEx 0.308 0.391 0.504 0.588 0.145 

TuckER 0.337 0.428 0.545 0.640 0.166 

HypER 0.328 0.418 0.546 0.638 0.161 

CrossE 0.251 0.332 0.440 0.531 - 

ConvE 0.311 0.402 0.524 0.615 0.150 

ComplEx-N3 0.375 0.462 0.589 0.674 0.183 

CP-N3 0.375 0.467 0.589 0.676 0.185 

Integrated      

5.2 Parameter sensitivity 

To investigate the influence of hyper-parameters of CP-N3 and ComplEx-N3, we 

tuned all related hyper-parameters of them to find best parameter settings on ADKG. 

We selected MRR and MRR of top 10 as evaluation metrics. There are four parame-

ters that need to be tuned. The first parameter is the entity and relation dimension of 

the embedding vectors learned in the model, tuning from {500, 1000, 1500, 2000, 

2500}. The second parameter is learning rate, which determines the rate of decrease 

of parameters during optimization, tuning from {0.05, 0.06, 0.07, 0.08, 0.09, 1.0}. 

The third parameter is batch size, indicating the sample size for training at the same 

time, tuning from {128, 256, 512, 1024}. The final parameter is regularization coeffi-

cient, tuning from {0.005, 0.01, 0.05, 0.1}. In turn, we fixed each possible value of 

the three parameters, while tuning the remaining parameter.  

Experimental results (Fig. 3A-D for CP-N3 and Fig. 3E-H for ComplEx-N3) show 

that in CP-N3, when the batch size is too small (128) or too large (512 or 1024), it 

showed poor performance, but good performance is obtained when the level is equal 

to 256. The dimension between 1000 and 2500 does not have much influence on the 

model, and the small-scale adjustment of learning rate has little influence. In terms of 

predictive performance, it shows that the model has strong robustness in predicting 

candidate entities. Similarly, in ComplEx-N3, the best performance is achieved when 

the batch size is 128, the dimension is 2500, the regularization coefficient in {0.005, 

0.01, 0.1} and the learning rate in {0.07, 0.09}. 
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Fig. 3. The prediction performance with tuning the hyper-parameters. The first parameter is the 

entity and relation dimension of the embedding vectors, tuning from {500, 1000, 1500, 2000, 

2500}. The second parameter is learning rate, tuning from {0.05, 0.06, 0.07, 0.08, 0.09, 1.0}; 

The third parameter is batch size, tuning from {128, 256, 512, 1024}; The final parameter is 

regularization coefficient, tuning from {0.005, 0.01, 0.05, 0.1}. A-D sub figures are for CP-N3 

and E-H sub figures are for ComplEx-N3. MRR-1 denotes MRR and MRR-2 denotes MRR of 

top 10. 
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5.3 Case study 

To illustrate the predictive performance of our model, we took the two triples (?, in-

teraction, ENTITY_6303) and (ENTITY_3946, binding, ?) in the first batch of pre-

diction data as an example and obtained the top 10 candidate entities (Table 3). 

In the top 10 candidate entities for (?, interaction, ENTITY_6303), we found that 

there are five entities, namely ENTITY_7358, ENTITY_5261, ENTITY_6303, 

ENTITY_3101, ENTITY_2000 and ENTITY_1379 are actually recorded in the 

benchmarks. In the top 10 candidate entities for (ENTITY_3946, binding, ?), there are 

four entities (i.e., ENTITY_761, ENTITY_2386, ENTITY_6309 and ENTITY_3333) 

that are recorded in benchmarks. This demonstrated that an reliable integrated results 

are obtained by our model. 

Table 3. Top 10 candidate entities for two predictive triples. (Bold entities are the 

hitting entities in benchmarks.) 

(?, interaction, ENTITY_6303) (ENTITY_3946, binding, ?) 

Rank Candidate entities Hit Rank Candidate entities Hit 

1 ENTITY_7358 √ 1 ENTITY_2675  

2 ENTITY_5261 √ 2 ENTITY_761 √ 

3 ENTITY_6303 √ 3 ENTITY_6527  

4 ENTITY_3101  4 ENTITY_3416  

5 ENTITY_2000 √ 5 ENTITY_2386 √ 

6 ENTITY_1379 √ 6 ENTITY_425  

7 ENTITY_4654  7 ENTITY_6309 √ 

8 ENTITY_7365  8 ENTITY_3333 √ 

9 ENTITY_5750  9 ENTITY_1835  

10 ENTITY_2459  10 ENTITY_224  

6 Discussion 

In this study, we provided a high-performance model of link prediction on knowledge 

graph. Of note, we proposed a fusion strategy to integrate the results of two tensor 

decomposition-based models to obtain a more reliable predictive result. We added the 

list of entity attributes to our knowledge graph to get more attribute information of the 

entity and added reciprocal relations [19,13] for every triple to expand the knowledge 

graph. Full experiments indicated that the proposed method obtained obviously per-

formance improvements. In addition, there are still challenges in the link prediction 

task, including the need to design a knowledge graph embedding algorithm that inte-

grates more ontology features, and analyze the equivalence between knowledge graph 

embedding and ontology reasoning. Future research directions might include: (i) 

Combining logical rules which contain rich background information and KG triples in 

a unified KG completion framework [28,29]. (ii) Consider the path relationship be-
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tween triples in the knowledge graph [30]. In the following work, we will continue to 

try new models and find the limitations of existing models to improve the perfor-

mance. 
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