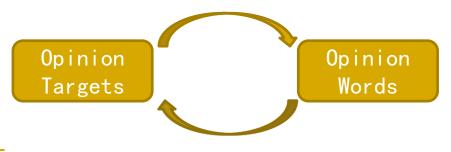

面向网络评论的观点信息抽取研究

刘康

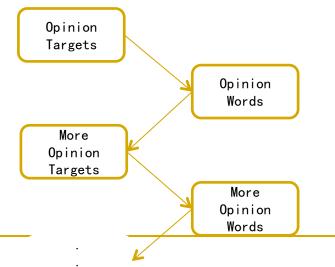
中国科学院自动化研究所模式识别国家重点实验室 2014. 5. 16

Opinion Mining

- 主观信息抽取
 - □ Unstructured → Structured
 - "我今年入手诺基亚5800,把玩不到24小时,目前感觉5800屏幕很好, 操作也很方便,通话质量也不错,但是外形有些偏女性化,不适合男生。这些都是小问题,最主要的问题是电池不耐用,只能坚持一天, 反正我觉得对不起这个价格。"


任务

■ 观点评价对象和评价词抽取



已有工作

- 非监督方法(Hu AAAI 2004, Popescu EMNLP 2005, Qiu CL 2010, Zhang COLING 2010)
 - □ 评价对象: 名词、名词短语
 - □ 评价词:形容词、动词等
 - □ 假设:评价词与评价对象之间具有评价关系
 - 如果一个词是一个评价对象,则与之具有评价关系的词很可能就是一个评价词;反之亦然。
 - Good Screen, Bad Design
 - □ Bootstrapping 框架

Double Propagation

评价关系识别

■ 近邻开窗(Hu 2004, Wang 2008)

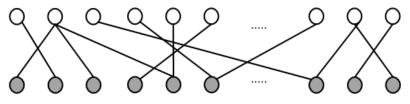
这款 <u>手机的外观</u> 很 <u>漂亮</u>

这家 小店 位于 小巷 的深处,尽管位置不好找,但是仍然很 赞

评价关系识别(续)

- 句法模板: Popescu (EMNLP 2005), Qiu (IJCAI 2009)
 - □ 利用评价对象和评价词之间的依存句法关系

__款__*漂亮*___的__新__<u>手机</u>___具有__ 让人_<u>惊叹__</u>__的__<u>大__屏幕</u> Root Typed dependencies det(款-2, 这-1) 具有 nsubj (漂亮-3, 款-2) dep (的-4, 漂亮-3) 手机 屏幕 remod(手机-6, 的-4) amod(手机-6, 新-5) nsubj(具有-7, 手机-6) 新 的 大 root(ROOT-0, 具有-7) dep(的-11, 让-8) dobj(让-8, 人-9) 让 dep (让-8, 惊叹-10) remod(屏幕-13, 的-11) 款 惊叹 amod(屏幕-13, 大-12) dobj(具有-7, 屏幕-13)

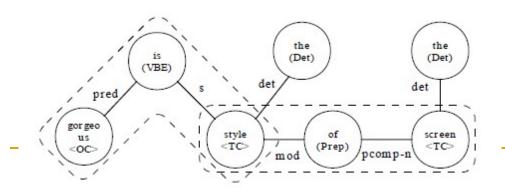

问题

- 评价关系识别
 - □ 句法方法:
 - 现有人工设定句法模板、覆盖度不高、精度差
 - □ 如何自动学习句法模板,如何考虑句法模板的置信度?
 - 网络文本通常是不规范文本,句法分析性能差
 - □ 是否可以不用句法分析器?
- 已有抽取框架仅仅利用评价对象和评价词之间的评价关系
 - □ 忽略评价对象和评价词本身的语义信息
 - Bad Feeling, Good Thing
- Bootstrapping抽取框架具有误差传递问题
 - □ 如何避免误差传递?

问题1:避免误差传递

- 基于Ranking的抽取框架
 - □ 评价对象(TC): 名词、名词短语
 - □ 评价词(0C): 形容词、动词

Opinion Target Candidates (nouns/noun phrases)


Opinion Word Candidates (adjectives)

Ranking: Random Walking, PageRank, ******

问题2: 评价关系识别(利用句法信息 ACL2013)

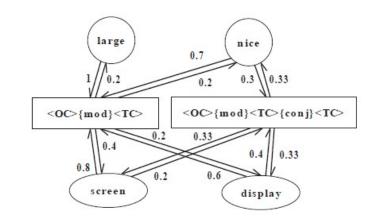
- 自动学习句法模板
 - □ 种子词 (评价词):
 - good, bad, colorful, gorgeous
 - □ 与种子词最近的名词(名词短语)间的最短依存路径
 - □ 滤除低频模板

The style of the screen is gorgeous

<0C>{pred} (VBE) {s} <TC>

评价关系识别:利用句法信息(续)

- 构建 Sentiment Graph
 - □ 三类节点


■ TC:评价对象候选

■ 0C: 评价词候选

■ P: 抽取所使用的模板

□ 假设

- 如果一个词是一个评价对象,则与之具有评价关系的00评价词的置信度则很高;反之亦然。
- 如果一个词是一个评价对象,另一个词是评价词,则抽取出他 们的模板则应该具有很高的置信度;同时高置信度的模板抽取 出的00和TC也应高具有高置信度。

Ranking

Random Walking Algorithm

$$\mathbf{c}_{p}^{t+1} = \mathbf{M}_{oc_p}^{T} \times \mathbf{c}_{oc}^{t} + \mathbf{M}_{tc_p}^{T} \times \mathbf{c}_{tc}^{t}$$

$$\mathbf{c}_{oc}^{t+1} = (1 - \lambda)\mathbf{M}_{p_oc}^{T} \times \mathbf{c}_{p}^{t} + \lambda \mathbf{c}_{oc}^{0}$$

$$\mathbf{c}_{tc}^{t+1} = \mathbf{M}_{p_tc}^{T} \times \mathbf{c}_{p}^{t}$$

$$\mathbf{M}_{oc_p}(v_o, v_p) = w(v_o, v_p)$$
 $\mathbf{M}_{tc_p}, \mathbf{M}_{p_oc}, \mathbf{M}_{p_tc}$
 $w(v_a, v_b) = freq(v_a, v_b)/freq(v_a)$

实验

■数据集

- Customer Review Dataset (CRD)
- □ COAE 2008
- Collect a larger dataset: LARGE

Dataset	Domain	#Sentences	#OW	#OT
Large (English)	Hote1	10,000	434	1,015
(English)	MP3	10,000	559	1,158
COAE08	Camera	2,075	351	892
(Chinese)	Car	4,783	622	1,179

Data set	Number of reviews	Number of sentences
D1	45	597
D2	34	346
D3	41	546
D4	95	1,716
D5	99	740

■ 评价指标

■ P, R and F1

实验结果: CRD

Methods	-	D1			D2	9		D3	8	3-0°	D4	1		D5		Avg.
Methods	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.75	0.82	0.78	0.71	0.79	0.75	0.72	0.76	0.74	0.69	0.82	0.75	0.74	0.80	0.77	0.76
DP	0.87	0.81	0.84	0.90	0.81	0.85	0.90	0.86	0.88	0.81	0.84	0.82	0.92	0.86	0.89	0.86
Zhang	0.83	0.84	0.83	0.86	0.85	0.85	0.86	0.88	0.87	0.80	0.85	0.82	0.86	0.86	0.86	0.85
Ours-Stage1	0.79	0.85	0.82	0.82	0.87	0.84	0.83	0.87	0.85	0.78	0.88	0.83	0.82	0.88	0.85	0.84
Ours-Full	0.86	0.82	0.84	0.88	0.83	0.85	0.89	0.86	0.87	0.83	0.86	0.84	0.89	0.85	0.87	0.86

Table 2: Results of opinion target extraction on the Customer Review Dataset.

Methods		D1	12.7	1 191	D2	10.01		D3	NIE.	113111	D4	111111		D5	113	Avg.
Witthous	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.57	0.75	0.65	0.51	0.76	0.61	0.57	0.73	0.64	0.54	0.62	0.58	0.62	0.67	0.64	0.62
DP	0.64	0.73	0.68	0.57	0.79	0.66	0.65	0.70	0.67	0.61	0.65	0.63	0.70	0.68	0.69	0.67
Ours-Stage1	0.61	0.75	0.67	0.55	0.80	0.65	0.63	0.75	0.68	0.60	0.69	0.64	0.68	0.70	0.69	0.67
Ours-Full	0.64	0.74	0.69	0.59	0.79	0.68	0.66	0.71	0.68	0.65	0.67	0.66	0.72	0.67	0.69	0.68

Table 3: Results of opinion word extraction on the Customer Review Dataset.

实验结果: Large and COAE2008

Methods		MP3	2-3		Hotel		(Camera	ı	<i>i</i>	Car		Avg.
Methods	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.53	0.55	0.54	0.55	0.57	0.56	0.63	0.65	0.64	0.62	0.58	0.60	0.58
DP	0.66	0.57	0.61	0.66	0.60	0.63	0.71	0.70	0.70	0.72	0.65	0.68	0.66
Zhang	0.65	0.62	0.63	0.64	0.66	0.65	0.71	0.78	0.74	0.69	0.68	0.68	0.68
Ours-Stage1	0.62	0.68	0.65	0.63	0.71	0.67	0.69	0.80	0.74	0.66	0.71	0.68	0.69
Ours-Full	0.73	0.71	0.72	0.75	0.73	0.74	0.78	0.81	0.79	0.76	0.73	0.74	0.75

Table 4: Results of opinion targets extraction on Large and COAE08.

Methods		MP3	e 11811 iz		Hotel			Camera	a		Car		Avg.
Methods	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.48	0.65	0.55	0.51	0.68	0.58	0.72	0.74	0.73	0.70	0.71	0.70	0.64
DP	0.58	0.62	0.60	0.60	0.66	0.63	0.80	0.73	0.76	0.79	0.71	0.75	0.68
Ours-Stage1	0.59	0.69	0.64	0.61	0.71	0.66	0.79	0.78	0.78	0.77	0.77	0.77	0.71
Ours-Full	0.64	0.67	0.65	0.67	0.69	0.68	0.82	0.78	0.80	0.80	0.76	0.78	0.73

Table 5: Results of opinion words extraction on Large and COAE08.

问题2: 评价关系识别(不利用句法信息 EMNLP 2012)

Word alignment

C: 救援 人员 在 倒塌的 房屋 里 寻找 生还者

E: Rescue workers search for survivors in collapsed houses

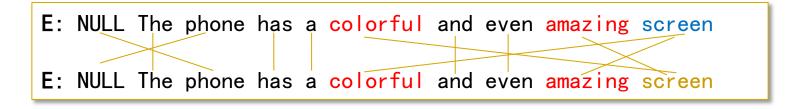
Monolingual word alignment

E: The phone has a colorful and even amazing screen

E: The phone has a colorful and even amazing screen

IBM对齐模型

■ IBM model (IBM-1, IBM-2, IBM-3)

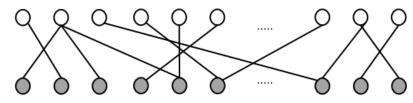

$$P_{IBM-1}(A \mid S) \propto \prod_{j=1}^{n} t(w_{j} \mid w_{a_{j}})$$
 词之间的共现关系
$$P_{IBM-2}(A \mid S) \propto \prod_{j=1}^{n} t(w_{j} \mid w_{a_{j}}) d(j \mid a_{j}, n)$$
 词之间的位置关系
$$P_{IBM-3}(A \mid S) \propto \prod_{i=1}^{n} n(\phi_{i} \mid w_{i}) \prod_{j=1}^{n} t(w_{j} \mid w_{a_{j}}) d(j \mid a_{j}, n)$$
 一个词的一对多关系

E: The phone has a colorful and even amazing screen

E: The phone has a colorful and even amazing screen

模型约束

- 名词或名词短语(形容词)只能与形容词(名词或名词短语) 或NULL对齐
- 其他词只能和自己对齐



■ 例子

	battery life	sound	software
wonderful	0.000	0.042	0.000
poor	0.032	0.000	0.026
long	0.025	0.000	0.000

Ranking

Opinion Target Candidates (nouns/noun phrases)

Random Walk with Restart

Opinion Word Candidates (adjectives)

$$C^{t+1} = (1 - \lambda) \times M^T \times M \times C^t + \lambda \times S$$

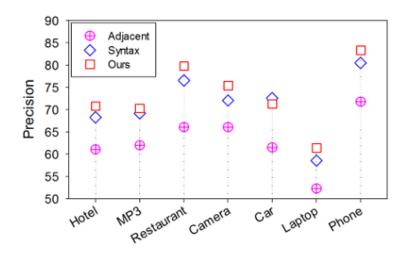
 $Association(w_N, w_A)$

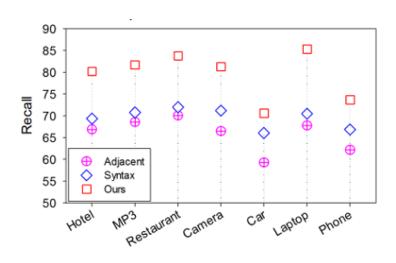
$$M = \begin{bmatrix} \vdots & \cdots & m \\ \vdots & \ddots & \vdots \\ & \cdots & \end{bmatrix}$$

$$S = \begin{bmatrix} s \\ s \\ \end{bmatrix}$$

$$C = \lambda \times (I - (1 - \lambda) \times M^{T} \times M)^{-1} \times S$$

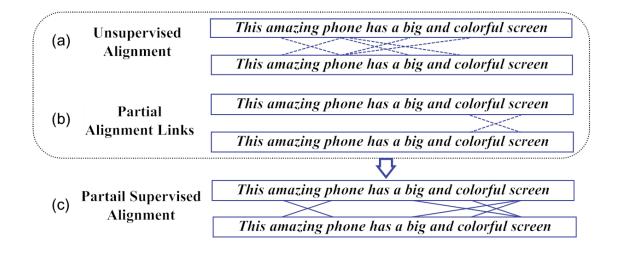
实验结果


Compared Methods


Adjacent: Adjacent rule

Syntax: Syntactic patterns

□ Ours: WAM


+ Our Graph-based Algorithm

句法信息与词对齐模型相结合 IJCAI 2013

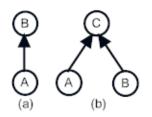
- 句法信息一点都没有用吗
 - □ WAM: 训练过程完全无监督, 容易产生错误
 - □ 需要对其进行约束

部分监督的单语对齐模型(Qin Gao, Workshop on SMT, ACL 2010)

■ Given the partial alignment $\hat{A} = \{(i, a_i) | i \in [1, n], a_i \in [1, n]\}$

$$A^* = \underset{A}{\operatorname{argmax}} P(A|S, \hat{A})$$

Three steps


- Train a simple alignment model to generate an initial alignments for IBM-3
- Update the alignments to make it consistent to the partial alignments links
- Optimize the alignment under the constraints iteratively

Algorithm 1 Constrained Hill-Climbing

```
1: Calculate the seed alignment a<sub>0</sub> using HMM model
 2: while ic(a_0) > 0 do
        if \{a : ic(a) < ic(a_0)\} = \emptyset then
           break
        end if
        a_0 := \arg \max_{a \in nb(a_0), ic(a) < ic(a_0)} Pr(f|e, a)
 7: end while
 8: M_{ij} := -1 if (i, j) \notin \alpha_I^J or (i, 0) \in \alpha_I^J
 9: loop
      S_{jj'} := -1 \text{ if } (j, a_{j'}) \notin \alpha_I^J \text{ or } (j', a_j) \notin \alpha_I^J
     M_{i_1j_1} = \arg \max M_{ij} \; ; S_{j_1j'_1} = \arg \max S_{ij}
       if M_{i_1j_1} \leq 1 and S_{j_1j_1'} \leq 1 then
           Break
13:
14:
       end if
15: if M_{i_1j_1} > S_{j_1j'_1} then
           Update M_{i_1*}, M_{j_1*}, M_{*i_1}, M_{*j_1}
           and S_{i_1*}, S_{j_1*}, S_{*i_1}, S_{*j_1}, set a_0 := M_{i_1j_1}(a_0)
17: else
           Update M_{j_1*}, M_{j'_1*}, M_{*j_1}, M_{*j'_1}
18:
           and S_{j_1'*}, S_{j_1*}, S_{*j_1'}, S_{*j_1}, set a_0 := S_{j_1j_1'}(a_0)
19: end if
20: end loop
21: Return an
```

部分对齐信息: 句法模板

■ 高质量的句法模板

Pattern1: $A \xrightarrow{R1} B A \in \{0\}, B \in \{T\}$ Pattern2: $A \xrightarrow{R1} C \xleftarrow{R2} B A \in \{0\}, B \in \{T\},$ C ∈ {any words}

Pattern#1: <OC $> \xrightarrow{mod} <$ TC>

Example: This phone has an *amazing design*

Pattern#2: <TC $> \xrightarrow{obj} <$ OC>

Example: I *like* this *phone* very much

Pattern#3: <OC $> \xrightarrow{pnmod} <$ TC>

Example: the *buttons easier* to use

Pattern#4: <OC $> \xrightarrow{mod} (NN) \xleftarrow{subj} <$ TC>

Example: *IPhone* is a *revolutionary* smart phone

Pattern#5: <OC $> \xrightarrow{pred} (VBE) \xleftarrow{subj} <$ TC>

Example: The quality of LCD is good

实验结果

Methods	20.	Camera	A 1800 P		Car			Laptop	Page -	67.00	Phone	002 1111 1510 1
Methods	P	R	F	P	R	F	P	R	F	P	R	F
Hu	0.63	0.65	0.64	0.62	0.58	0.60	0.51	0.67	0.58	0.69	0.60	0.64
DP	0.71	0.70	0.70	0.72	0.65	0.68	0.58	0.69	0.63	0.78	0.66	0.72
Zhang	0.71	0.78	0.74	0.69	0.68	0.68	0.57	0.80	0.67	0.80	0.71	0.75
Liu	0.75	0.81	0.78	0.71	0.71	0.71	0.61	0.85	0.71	0.83	0.74	0.78
Ours	0.77	0.82	0.79	0.74	0.71	0.72	0.66	0.85	0.74	0.85	0.75	0.80

Table 1: Experimental Results on COAE 2008

Methods		Hotel		3311	MP3			Restaurant	11
Methods	P	R	F	P	R	F	P	R	F
Hu	0.60	0.65	0.62	0.61	0.68	0.64	0.64	0.69	0.66
DP	0.67	0.69	0.68	0.69	0.70	0.69	0.74	0.72	0.73
Zhang	0.67	0.76	0.71	0.67	0.77	0.72	0.75	0.79	0.77
Liu	0.71	0.80	0.75	0.70	0.82	0.76	0.80	0.84	0.82
Ours	0.76	0.83	0.79	0.74	0.84	0.79	0.85	0.85	0.85

Table 2: Experimental Results on Large

Methods		DI			D2			D3			D4			D5	
Methods	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
Hu	0.75	0.82	0.78	0.71	0.79	0.75	0.72	0.76	0.74	0.69	0.82	0.75	0.74	0.80	0.77
DP	0.87	0.81	0.84	0.90	0.81	0.85	0.90	0.86	0.88	0.81	0.84	0.82	0.92	0.86	0.89
Zhang	0.83	0.84	0.83	0.86	0.85	0.85	0.86	0.88	0.87	0.80	0.85	0.82	0.86	0.86	0.86
Liu	0.84	0.85	0.84	0.87	0.85	0.86	0.88	0.89	0.88	0.81	0.85	0.83	0.89	0.87	0.88
Ours	0.86	0.84	0.85	0.88	0.83	0.85	0.89	0.90	0.89	0.81	0.83	0.82	0.91	0.87	0.89

Table 3: Experimental Results on Customer Review Dataset

WAM在不同数据规模下是否都有效? ACL2013

Varying data size
 □ 500→1,000,000

数据量大的时候,精准的opinion relation识别结果没有作用

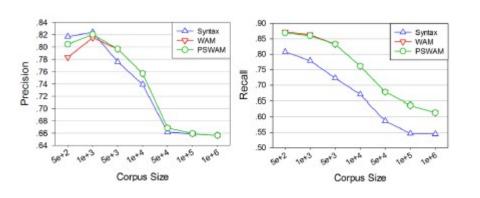


Figure 3: Experimental results on Restaurant

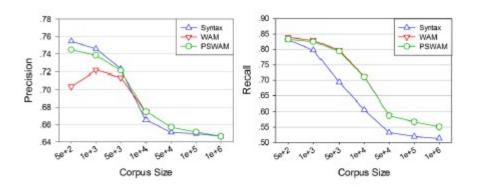


Figure 4: Experimental results on Hotel

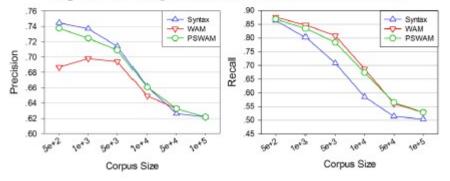
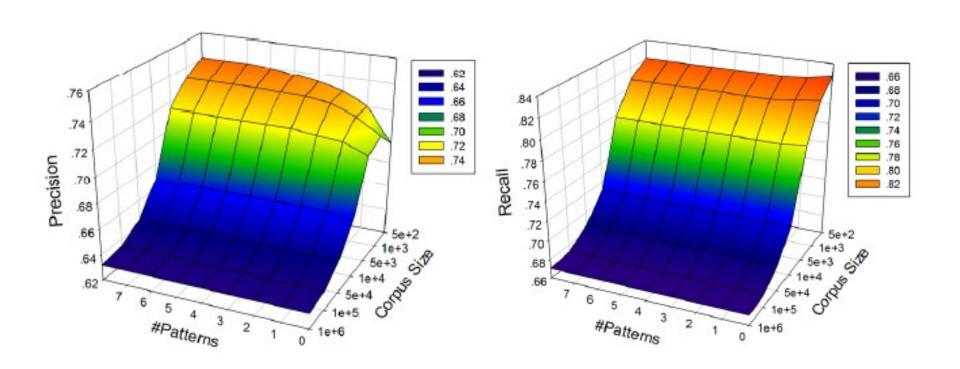
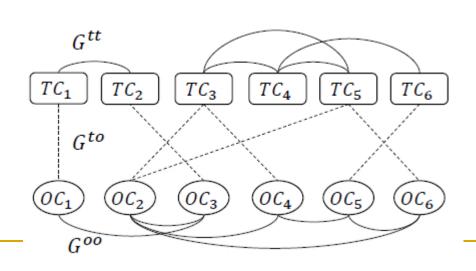
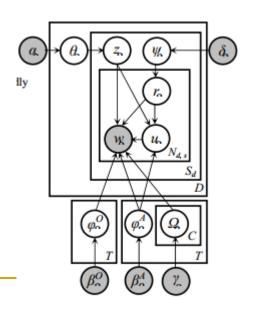



Figure 5: Experimental results on MP3


WAM在不同数据规模下是否都有效? (续)



问题3: 考虑候选本身的语义信息 ACL2014

■ 假设

- 如果一个词是一个评价对象,则与之具有评价关系的00评价词的置信度则很高;反之亦然。
- 如果一个词是一个评价对象(评价词),则与之具有相同语义关系的词也应该是评价对象(评价词);反之亦然。
 - LCD vs. LED, beautiful vs. colorful

Ranking

Co-ranking Algorithm

$$C_{t} = (1 - \lambda - \mu) \times \hat{M}_{to} \times C_{o}$$

$$+ \lambda \times M_{tt} \times C_{t} + \mu \times I_{t}$$

$$C_{o} = (1 - \lambda - \mu) \times \hat{M}_{to}^{T} \times C_{t}$$

$$+ \lambda \times M_{oo} \times C_{o} + \mu \times I_{o}$$

评价对象抽取结果

Methods		D1			D2			D3			D4			D5		Avg.
Methous	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.75	0.82	0.78	0.71	0.79	0.75	0.72	0.76	0.74	0.69	0.82	0.75	0.74	0.80	0.77	0.758
DP	0.87	0.81	0.84	0.90	0.81	0.85	0.90	0.86	0.88	0.81	0.84	0.82	0.92	0.86	0.89	0.856
Zhang	0.83	0.84	0.83	0.86	0.85	0.85	0.86	0.88	0.87	0.80	0.85	0.82	0.86	0.86	0.86	0.846
SAS	0.80	0.79	0.79	0.82	0.76	0.79	0.79	0.74	0.76	0.77	0.78	0.77	0.80	0.76	0.78	0.778
Liu	0.84	0.85	0.84	0.87	0.85	0.86	0.88	0.89	0.88	0.81	0.85	0.83	0.89	0.87	0.88	0.858
Hai	0.77	0.87	0.83	0.79	0.86	0.82	0.79	0.89	0.84	0.72	0.88	0.79	0.74	0.88	0.81	0.818
CR	0.84	0.86	0.85	0.87	0.85	0.86	0.87	0.90	0.88	0.81	0.87	0.83	0.89	0.88	0.89	0.862
CR_WP	0.86	0.86	0.86	0.88	0.86	0.87	0.89	0.90	0.89	0.81	0.87	0.83	0.91	0.89	0.90	0.870

Table 2: Results of Opinion Targets Extraction on Customer Review Dataset

Methods		Camera			Car			Laptop			Phone			Mp3			Hotel		Avg.
Withous	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.63	0.65	0.64	0.62	0.58	0.60	0.51	0.67	0.58	0.69	0.60	0.64	0.61	0.68	0.64	0.60	0.65	0.62	0.587
DP	0.71	0.70	0.70	0.72	0.65	0.68	0.58	0.69	0.63	0.78	0.66	0.72	0.69	0.70	0.69	0.67	0.69	0.68	0.683
Zhang	0.71	0.78	0.74	0.69	0.68	0.68	0.57	0.80	0.67	0.80	0.71	0.75	0.67	0.77	0.72	0.67	0.76	0.71	0.712
SAS	0.72	0.72	0.72	0.71	0.64	0.67	0.59	0.72	0.65	0.78	0.69	0.73	0.69	0.75	0.72	0.69	0.74	0.71	0.700
Liu	0.75	0.81	0.78	0.71	0.71	0.71	0.61	0.85	0.71	0.83	0.74	0.78	0.70	0.82	0.76	0.71	0.80	0.7.	0.749
Hai	0.68	0.84	0.76	0.69	0.75	0.72	0.58	0.86	0.72	0.75	0.76	0.76	0.65	0.83	0.74	0.62	0.82	0.75	0.742
CR	0.75	0.83	0.79	0.72	0.74	0.73	0.60	0.85	0.70	0.83	0.77	0.80	0.70	0.84	0.76	0.71	0.83	0.77	0.758
CR_WP	0.78	0.84	0.81	0.74	0.75	0.74	0.64	0.85	0.73	0.84	0.76	0.80	0.74	0.84	0.79	0.74	0.82	0.78	0.773

Table 3: Results of Opinion Targets Extraction on COAE 2008 and Large

评价词抽取结果

Methods	D1				D2			D3		D4				Avg.		
	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.57	0.75	0.65	0.51	0.76	0.61	0.57	0.73	0.64	0.54	0.62	0.58	0.62	0.67	0.64	0.624
DP	0.64	0.73	0.68	0.57	0.79	0.66	0.65	0.70	0.67	0.61	0.65	0.63	0.70	0.68	0.69	0.666
SAS	0.64	0.68	0.66	0.55	0.70	0.62	0.62	0.65	0.63	0.60	0.61	0.60	0.68	0.63	0.65	0.632
Hai	0.62	0.77	0.69	0.52	0.80	0.64	0.60	0.74	0.67	0.56	0.69	0.62	0.66	0.70	0.68	0.660
CR	0.62	0.75	0.68	0.57	0.79	0.67	0.64	0.75	0.69	0.63	0.69	0.66	0.68	0.69	0.69	0.678
CR_WP	0.65	0.75	0.70	0.59	0.80	0.68	0.65	0.74	0.70	0.66	0.68	0.67	0.71	0.70	0.70	0.690

Table 4: Results of Opinion Words Extraction on Customer Review Dataset

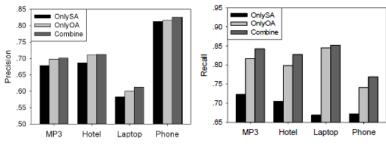
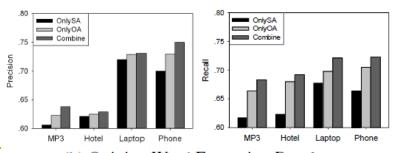

Methods	Camera			Car			Laptop			Phone			Mp3			Hotel			Avg.
	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	F
Hu	0.72	0.74	0.73	0.70	0.71	0.70	0.66	0.70	0.68	0.70	0.70	0.70	0.48	0.67	0.56	0.52	0.69	0.59	0.660
DP	0.80	0.73	0.76	0.79	0.71	0.75	0.75	0.69	0.72	0.78	0.68	0.73	0.60	0.65	0.62	0.61	0.66	0.63	0.702
SAS	0.73	0.70	0.71	0.75	0.68	0.71	0.72	0.68	0.69	0.71	0.66	0.68	0.64	0.62	0.63	0.66	0.61	0.63	0.675
Hai	0.76	0.74	0.75	0.72	0.74	0.73	0.69	0.72	0.70	0.72	0.70	0.71	0.61	0.69	0.64	0.59	0.68	0.64	0.690
CR	0.80	0.75	0.77	0.77	0.74	0.75	0.73	0.71	0.72	0.75	0.71	0.73	0.63	0.69	0.64	0.63	0.68	0.66	0.710
CR_WP	0.80	0.75	0.77	0.80	0.74	0.77	0.77	0.71	0.74	0.78	0.72	0.75	0.66	0.68	0.67	0.67	0.69	0.68	0.730

Table 5: Results of Opinion Words Extraction on COAE 2008 and Large


Semantic Relation vs. Opinion Relation

- Compared Methods
 - OnlySA: semantic relations
 - OnlyOA: opinion relations
 - Combine: both relations

+ Graph-based Ranking Algorithm

(a) Opinion Target Extraction Results

(b) Opinion Word Extraction Results

总结

- Bootstrapping抽取框架具有误差传递问题
 - □ 如何避免误差传递?
 - Ranking-based Framework
- 评价关系识别
 - □ 如何自动学习句法模板,如何考虑句法模板的置信度?
 - 在图中加入模板节点,考虑模板置信度
 - □ 是否可以不用句法分析器?
 - WAM替代句法分析器
 - PSWAM将句法信息与WAM相结合
 - 讨论了大规模数据下WAM是否更加有效
- 已有抽取框架仅仅利用评价对象和评价词之间的评价关系
 - □ 忽略评价对象和评价词本身的语义信息
 - 利用主题模型挖掘词间语义关系
 - 利用Co-ranking算法融入各种语义关系

论文发表

- Kang Liu, Liheng Xu and Jun Zhao, Extracting Opinion Targets and Opinion Words from Online Reviews with Graph Co-ranking, To appear in Proceedings of ACL 2014, Baltimore, USA, June 22-27 (oral).
- Liheng Xu, Siwei Lai, Kang Liu and Jun Zhao, Product Feature Mining: Semantic Clues versus Syntactic Constituents, To appear *in Proceedings of ACL 2014*, Baltimore, USA, June 22-27 (oral).
- Kang Liu, Liheng Xu and Jun Zhao, Syntactic Patterns versus Word Alignment: Extracting Opinion Targets from Online Reviews, in *Proceedings of ACL 2013*, Sofia, Bulgaria, August 4-9 (oral).
- Kang Liu, Liheng Xu and Jun Zhao, Opinion Target Extraction Using Partial-Supervised Word Alignment Model, in *Proceedings of IJCAI 2013*, Beijing, China, August 5-9 (oral).
- Liheng Xu, Kang Liu, Siwei Lai, Yubo Chen and Jun Zhao, Mining Opinion Words and Opinion Targets in a Two-Stage Framework, in *Proceedings of ACL 2013*, Sofia, Bulgaria, August 4-9 (oral).
- Liheng Xu, Kang Liu, Siwei Lai, Yubo Chen and Jun Zhao, Walk and Learn: A Two-Stage Approach for Opinion Words and Opinion Targets Co-Extraction, in *Proceedings* of WWW 2013, Rio de Janeiro, Brazil, May 13-17 (poster).
- Kang Liu, Liheng Xu and Jun Zhao, Opinion Target Extraction Using Word-Based Translation Model, In Proceedings of EMNLP-CoNLL 2012, Jeju, Korea, July (oral).

谢谢